Fourier Transform Infrared Spectroscopy of Azide Ion in Reverse Micelles

Qun Zhong

Naval Research Laboratory Washington, DC 20375

Email: qun.zhong@nrl.navy.mil http://chem1.nrl.navy.mil/molecular/qun/osu57.pdf

Introduction

1. What are reverse micelles (RMs)?

Nanosize water droplets solubilized in oil

phase by surfactants

2. Why studying RMs?

Wide range of applications —

Biocatalysis, drug delivery,
nanoparticle fabrication, micro-reactor,
solvation dynamics in confined environment.

3. How to study RMs?

- Time-resolved fluorescence, dynamic light scattering aggregation
- FTIR and Raman spectroscopy structure
- Probe molecules (organic dye) solvation interaction

4. Focus of this work:

- Sizes of NP RMs by Time-resolved fluorescence quenching
- FTIR of O-H stretch of water and C-O stretch of NP
- Vibrational band of azide ion to probe NP RMs

Experimental

Materials

```
nonionic NPn \rightarrow C<sub>9</sub>H<sub>19</sub>—\bigcirc (OCH<sub>2</sub>CH<sub>2</sub>)<sub>n</sub>—OH (NP7/NP4=4) anionic AOT \rightarrow (C<sub>8</sub>H<sub>17</sub>—O—C—)<sub>2</sub>CH—SO_3 Na<sup>+</sup> cationic CTAB \rightarrow C<sub>16</sub>H<sub>33</sub>—N(CH<sub>3</sub>)<sub>3</sub>+ Br<sup>-</sup> \omega = [H<sub>2</sub>O]/[surfactant]
```

- FTIR → Mattson 7020A (resolution: 1 cm⁻¹)
- ➤ TRFQ^a → fluorophore dye: Ru(bpy)₃(CI)₂ quencher: methyl viologen

$$[dye]/[M] < 0.04$$

 $[Q]/[M]<1.2$

^a Lang et. al. J. Phys. Chem. **92**, 1946 (1988).

Time-resolved fluorescence quenching

Aggregation number + radius of NP RMs

$$I(t) = I_0 \exp\{-A_2 t - A_3 [1 - \exp(-A_4 t)]\}$$

$$A_2 = k_0 + (k_e k_Q / A_4) [Q]$$

$$A_3 = [Q] / [M] \cdot (k_Q / A_4)^2$$

$$A_4 = k_Q + k_e [M]$$

$$N = A_3([surfactant]-CMC)/[Q] \cdot [(A_3A_4+A_2-k_0)/A_3A_4]^2$$

$$R_{\omega} = [3N\omega V_{H_2O}/4\pi]^{1/3}$$
 $CMC = 0.031 M$ $V_{H_2O} = 29.9 \text{ Å}^3$

Aggregation number of NP RMs in cyclohexane

NP RMs in cyclohexane:

- [NP] = 0.28 M, ω_{max} = 13
- $\omega_{\rm max}$ increases with [NP]

Aggregation number:

- ullet increases with increasing ω
- increases at elevated T
- independent of
 - ° concentration of NP
 - ° added sodium azide

^b C₁₂E₄ in cyclohexane: Caldararu *et. al. Adv. Colloid and Interface Sci.* **89-90**, 169 (2001).

FTIR of O-H and C-O stretch bands in NP RMs

As ω increases:

- red-shift in C-O stretch
- water becomes more bulk-like

Antisymmetric v_3 vibration of azide ion in NP RMs

$$\delta - N = \stackrel{\delta^+}{N} = N^{\delta^-}$$

The v_3 band:

- in gas phase- 1987 cm⁻¹
- in bulk water- 2049 cm⁻¹
- shows no dependence on
 - ° azide ion concentration
 - surfactant concentration
 - ° added salts
- blue shift towards bulk at elevated T
- similar shift in C-N stretch of OCN- and SCN- ions

Antisymmetric v_3 vibration of azide ion

Possible causes for the v_3 shift :

- charge of the surfactant
- location of the ion
- polarity of water
- presence of Na⁺

Summary

- \triangleright NP RMs grow in size with ω
- Water become more bulk-like as ω increases
- R_{ω} = 13 ~ 34 Å for NP RMs at ω = 1 to 10 R_{ω} is insensitive to [NP]
- \triangleright The v_3 vibrational band of azide ion solute IR probe of RMs
 - The v_3 frequency depends on the surfactant charge
 - ° blue shifts in AOT RMs compared to in bulk water
 - ° red shifts in NP and CTAB RMs compared to in bulk water
 - The ν_3 band tends toward the bulk value with ω
- Ongoing studies on RMs
 - time-resolved dynamics <u>vibrational relaxation</u>, photodetachment, photodissociation, and recombination

Time-resolved dynamics in reverse micelle

- Relaxation rate depends on ω : shift towards the bulk value at large ω
- Polarization dependent exp.
 vibrational relaxation reorientation time
- VIS pump IR probe photodetachment, photodissociation, and recombination
- Surfactant charge effect on dynamics

Vibrational relaxation of the v_3 band of azide in NP RMs by IR pump – IR probe

Normalized Transient Absorbance Change

Acknowledgements

Jeff Owrutsky

Daniel Steinhurst

Andy Baronavski

Everett Carpenter

This work was supported by the office of Naval Research through the Naval Research Laboratory.

This work was performed while QZ held a Naval Research Laboratory – National Research Council Research Associateship.